
Mary Hall
Salishan

April 2012

Automating Application Mapping with
Autotuning:

Paving the Way to Exascale

* This work has been partially sponsored by DOE SciDAC as part of the Performance
Engineering Research Institute (PERI), DOE Office of Science, the National Science
Foundation, DARPA and Intel Corporation.

 1

1.  Setting expectations for exascale compiler
mapping technology from a 20 year
retrospective

2.  Key issues in future programming models and
opportunities for leverage

3.  A look at autotuning, a specific enabling
technology for exascale

Three Goals for Talk

 2

•  Old approaches to compilers mapping parallelism
–  Limited to loops and array computations
–  Difficult to find sufficient granularity (parallel work between

synchronization)
–  Very restricted mapping strategy
–  Success but from fragile, complex software

Previous Work in Automatic Parallelization

From Hall et al, “Maximizing Multiprocessor
Performance with the SUIF Compiler”, IEEE
Computer, Dec. 1996.

50% higher Specfp95 ratio than
previously reported

 3

1990s View

•  Programmer writes
code at high level
– Much or all

complexity managed
by compiler

 4

•  But doing everything in the compiler is hard!
•  Expert programmers have knowledge that

should be exploited.
•  Compiler development cycle is slow.
•  Application scientists will find expedient

solutions.

•  What’s not working
–  Transformations and optimizations often applied in

isolation, but significant interactions
–  Static compilers must anticipate all possible

execution environments
–  Potential to slow code down; many users say “never

use O3”
–  Users write low-level code to get around compiler

which makes things even worse

Historical Organization of Compilers,
Users’ Perspective

A
gg

re
ss

iv
e

O

pt
im

iz
at

io
n

S
lo

w
do

w
n

R
is

k

Bottom line: Known compiler techniques capable of
much better performance than they are delivering, but
solutions don’t generalize across applications and
complexity of system is difficult to maintain.

 5

Compiler Technology:
Opportunities and Challenges

Successes:
Vectorization, ILP, scalar
optimization, managing
registers, code generation,
locality optimization (partial)

Needed advances:
Programming model
abstractions partnered with
compiler, interface to run-
time and programmer

Still open issues:
Coarse-grain parallelism,
high performance for
irregular computations,
rapid deployment

Opportunities:
Machine resources available
for tuning, exascale
programming challenges
demand fundamental change

 6

•  Exascale architectures will be fundamentally different
–  Power management THE fundamental issue
–  Reliability (h/w and s/w) increasingly a concern
–  Memory reduction to .01 bytes/flop
–  Hierarchical, heterogeneous

•  Basic rethinking of the software “stack”
–  Express and manage locality and parallelism for ~billion

threads
–  Create/support applications that are forward scalable

and portable (underlying tools map to h/w details)
–  Manage power and resilience requirements

•  Locality is a big part of power/energy
•  Resilience should leverage abstraction changes

“Software Challenges in Extreme Scale Systems,” V. Sarkar, B. Harrod and A. Snavely, SciDAC 2009, June, 2009. Summary
of results from a DARPA study entitled, “Exascale Software Study,” June 2008 through Feb. 2009.

Exascale Challenges Will Force Change

 7

Thanks to exascale reports and workshops!
•  Multiresolution programming systems for different users

–  Joe/Stephanie/Doug [Pingali, UT]
–  Elvis/Mort/Einstein [Intel]

•  Specialization simplifies and improves efficiency
–  Target specific user needs with domain-specific languages/libraries
–  Customize libraries for application needs and execution context

•  Interface to programmers and runtime/hardware
–  Seamless integration of compiler with programmer guidance and

dynamic feedback from runtime
•  Toolkits rather than monolithic systems

–  Layers support different user capability
–  Collaborative ecosystem

•  Virtualization (over-decomposition)
–  Hierarchical, or flat but construct hierarchy when applicable?

 8

A View in 2012

•  Definition:
–  Automatically generate a “search space” of possible

implementations of a computation
•  A code variant represents a unique implementation of a

computation, among many
•  A parameter represents a discrete set of values that

govern code generation or execution of a variant
–  Measure execution time and compare
–  Select the best-performing implementation (for exascale,

tradeoff between performance/energy/reliability)
•  Key Issues:

–  Identifying the search space
–  Pruning the search space to manage costs
–  Off-line vs. on-line search

What is Autotuning?

 9

a.  Autotuning libraries
–  Library that encapsulates knowledge of its performance

under different execution environments
–  Dense linear algebra: ATLAS, PhiPAC
–  Sparse linear algebra: OSKI
–  Signal processing: SPIRAL, FFTW

b.  Application-specific autotuning
–  Active Harmony provides parallel rank order search for

tunable parameters and variants
–  Sequoia and PetaBricks provide language mechanism for

expressing tunable parameters and variants
c.  Compiler-based autotuning (this talk!)

–  Other examples: Saday et al., Swany et al., Eignenmann et al.
–  Related concepts: iterative compilation, continuous

compilation, learning-based compilation

Three Types of Autotuning Systems

 10

{
Current/
Future
Work

Who/What Present Future

Application
programmer writes

A single implementation of
a computation, or perhaps
a few guarded by run-time
tests

A compact search space
of parameterized
variants

Library developer
writes

Numerous implementations
of a computation, guarded
by run-time tests

A compact search space
of parameterized
variants

Compiler generates A single implementation of
a computation, or perhaps
a few guarded by run-time
tests

A compact search space
of parameterized
variants

System executes Compiled code as provided A synthesis of variants
and their parameter
values meeting
optimization criteria

Differences: Present and Future

 11

•  Foundational Concepts
–  Identify search space through a high-level description

that captures a large space of possible implementations
–  Prune space through compiler domain knowledge and

architecture features
–  Provide access to programmers with transformation

recipes (controversial)
–  Uses source-to-source transformation for portability,

and to leverage vendor code generation
–  Requires restructuring of the compiler

•  Impact
–  Developers write less and higher-level code, more

automatically generated/managed
–  Systematic characterization and analysis

Compiler-Based Autotuning: My Philosophy

 12

a in shared memory, both a and b are
read through texture memory

Different computation decomposition
leads to additional tile command

Nvidia TC2050 Fermi
implementation
Mostly corresponds to CUBLAS
3.2 and MAGMA

Nvidia GTX-280 implementation
Mostly corresponds to CUBLAS
2.x and Volkov’s SC08 paper

Transformation Recipes for Autotuning:
Incorporate the Best Ideas from Manual Tuning

13

•  Performance comparison with CUBLAS 3.2

Compiler + Autotuning can yield comparable and even
better performance than manually-tuned libraries

 14

Matrix-Matrix Multiply (dgemm)

Matrix-Vector Multiply (sgemv)

“Autotuning, Code Generation and Optimizing Compiler Technology For GPUs,” M.
Khan, PhD Dissertation, University of Southern California, May 2012.

Autotuning and Specialization for Nek5000

•  Applications: nuclear energy, astrophysics, ocean
modeling, combustion, bio fluids,

•  Scales to P > 10,000 (Cray XT5, BG/P)
•  > 75% of time spent on manually optimized mxm

–  matrix multiply of very small, rectangular matrices
–  matrix sizes remain the same for different

problem sizes

Spectral element code: turbulence in wire-wrapped subassemblies

 15

Library:
2.2X speedup for
specialized DGEMM

nek5000: Automatically-Generated BLAS Code
is Faster than Manually-Tuned Libraries

Application:
26% performance
gain on Jaguar

 16

“Autotuning and Specialization: Speeding up Nek5000 with Compiler Technology,” J. Shin, M. W. Hall, J. Chame, C. Chen, P. Fischer,
P. D. Hovland, International Conference on Supercomputing, June, 2010.

Autotuning and Specialization also Benefit PETSc
Sparse Libraries

Example: MatSolve_SeqBAIJ_N

Represents sparse matrix as
collection of dense blocks

PETSc includes a large number
of different implementations
specialized for different block
sizes

•  PFloTran, an example from PERI
•  Models Multiscale-Multiphase-Multicomponent Subsurface Reactive

Flows
•  PETSc routines comprise 30% of execution time on hopper

at NERSC. Two routines achieve only 4% of peak.

 17

“Improving High-Performance Sparse Libraries using Compiler-Assisted Specialization: A PETSc Case Study”, S. Ramalingam, M. W.
Hall, C. Chen, Workshop on High-Level Programming Models and Supporting Systems, May, 2012.

for si = 0 to NS-1	
 for k = 0 to NZ-1	
 for j = 0 to NY-1	
 for i = 0 to NX-1	
 r[i + j*JR + k*KR] -=	
 A[i + j*JA + k*KA + SA[si]]	
 * x[i + j*JX + k*KX + Sx[si]]	

2D 6-point Stencil

•  Semi-coarsening multigrid on structured grids
–  Residual computation contains sparse matrix-vector

multiply bottleneck, expressed in 4-deep loop nest
–  Key computation identified by HPCToolkit

 18

Application example from PERI:
SMG2000 Optimization

Selected parameters:
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc
Performance gain on residual computation:
2.37X
Performance gain on full app:
27.23% improvement

Optimization search
space has 581M points!

Parallel search (Active
Harmony) evaluates
490 points, converges
in 20 steps

Parallel Heuristic-Based Search for
SMG2000 Converges Rapidly

Outlined Code (from ROSE outliner)
for (si = 0; si < stencil_size; si++)
 for (kk = 0; kk < hypre__mz; kk++)
 for (jj = 0; jj < hypre__my; jj++)
 for (ii = 0; ii < hypre__mx; ii++)
 rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=
 ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+
 (((A->data_indices)[i])[si])])*
 (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+((*dxp_s)[si])]));

CHiLL Transformation Recipe
permute([2,3,1,4])
tile(0,4,TI)
tile(0,3,TJ)
tile(0,3,TK)
unroll(0,6,US)
unroll(0,7,UI)

 19

“Auto-tuning Full Applications: A Case Study", A. Tiwari, C. Chen, C. Liao, J. Chame, J. Hollingsworth, M. Hall and D. Quinlan,
International Journal of High Performance Computing Applications, 25(3):286-294, Aug. 2011.

•  Conceptual: Rethink the development process as a way of
expressing a search space rather than a fixed
implementation
–  What are the right abstractions to expose to

programmer
–  Integrate into multiresolution system

•  Navigating prohibitively large search space
–  Includes performance, power and reliability
–  Models and pruning are critical
–  Parallel search algorithms can be effective
–  Tuning multiple computations simultaneously still an

open problem
•  Managing overhead (performance, storage and energy)

Summary: Autotuning Challenges

 20

Example	
 Tools	
 Scenario:	
 Op3mizing	
 Data	
 Decomposi3on	

From	
 DARPA	
 Exascale	
 So<ware	
 Study	

Three enabling
technologies

Companion Computations:
Execute collaboratively with
computation to improve its
execution

Autotuning:
Automatically
explore search space
of implementation
alternatives

Data Collection and Analysis:
Gather and synthesize data
about execution

 21

 22

